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This article examines the statistical determinants of risk preference. In a meta-analysis of animal risk
preference (foraging birds and insects), the coefficient of variation (CV), a measure of risk per unit of
return, predicts choices far better than outcome variance, the risk measure of normative models. In a
meta-analysis of human risk preference, the superiority of the CV over variance in predicting risk taking
is not as strong. Two experiments show that people’s risk sensitivity becomes strongly proportional to
the CV when they learn about choice alternatives like other animals, by experiential sampling over time.
Experience-based choices differ from choices when outcomes and probabilities are numericaly de-
scribed. Zipf's law as an ecological regularity and Weber’'s law as a psychological regularity may give

rise to the CV as a measure of risk.

Decision making under risk and uncertainty is a topic of re-
search in disciplines as diverse as psychology, economics, zool-
ogy, and entomology. Both the animal and the human risky choice
literatures have proposed models that either predict choices in a
deterministic fashion or predict risk sensitivity (i.e., the probability
of choosing ariskier or less risky option) in a stochastic fashion.
Theories of human risky choice include the prescriptive expected
utility model (von Neumann & Morgenstern, 1947) or the risk—
return models used to price risky options in finance (Markowitz,
1959). A prominent descriptive model is prospect theory (Kahne-
man & Tversky, 1979). In the animal literature, theories about
risky foraging gave rise to the energy budget rule (Caraco, 1980;
Stephens, 1981), a special case of a genera class of normative
models called risk sensitivity theories that construe risk sensitivity
as the response of organisms whose goal is the maximization of
Darwinian fitness in stochastic environments. Similar to prospect
theory for human risky choice, the energy budget rule predicts risk
aversion when animals are not in danger of starvation (domain of
gains) but risk seeking when thereis such arisk (domain of 10sses).

Although different in many respects, these models all assume
that the likelihood of choosing a risky option is affected by the
variability of the option’s possible outcomes. The measure of
variability used in these models is usualy the variance of out-
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comes around the option’s expected value. The capital-asset-
pricing model in finance, for example, equates risk with variance
and predicts that people’ s willingness to pay for risky options with
equal expected value is a decreasing function of the options
outcome variance (Sharpe, 1964). The energy budget rule, as
another example, predicts that—among options with equal ex-
pected energy intake—animals will prefer foraging options with
smaller variance when the expected energy intake exceeds the
caloric needs of the animal but will prefer options with greater
variance when the expected energy intake is less than that required
for survival because increases in outcome variance (holding ex-
pected value constant) are associated with a greater chance of
obtaining the caloric intake required for survival.

However, observed levels of risk sensitivity for humans as well
as other animals often deviate from the predictions of these models
(see Kacelnik & Bateson, 1996, and Shafir, Wiegmann, Smith, &
Real, 1999). Human risky choice data (e.g., E. U. Weber, 1988;
E. U. Weber & Milliman, 1997) suggest that the predictive short-
coming of these models stems from their use of outcome variance
as a measure of risk. Variance seems to be the wrong measure of
risk for some reasons that have been discussed elsewhere (Luce &
Weber, 1986)." In this article, we address an additional shortcom-
ing of outcome variance (or standard deviation) as a measure of
risk that relates to the fact that people (and other animals) may
perceive and encode outcome variability not in an absolute fashion
but relative to the average level of outcomes. Like E. U. Weber
(1999; E. U. Weber & Hsee, 1999) in a different context, we argue
that characteristics of the subjective perception of outcome vari-

1 One important problem is that variance treats deviations above and
below the mean symmetrically, even though most people are vastly more
concerned with variability below the mean than variability above the mean
when judging risk (e.g., Bontempo et al., 1997).
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ability need to be considered to arrive at accurate predictions or
interpretations of behavior in risky choice situations.

To make this point, we take a brief detour into psychophysics.
Psychophysical investigations of people’s judgments of simple
sensory continua (e.g., loudness, brightness) show that the differ-
ence in stimulus magnitude required to see two stimuli as different
grows in proportion to the stimulus to which the difference is
added (E. H. Weber, 1834/1978). This difference (called just
noticeable difference [IND]) provides a measure of discriminabil-
ity in psychophysical judgments. Weber’'s law describes the fact
that the IND grows proportionately to the absolute level of stim-
ulus magnitude. Marsh and Kacelnik (2002) applied Weber's law
to risky choice. Their scalar utility theory (SUT) makes use of
Gibbon's (1977) scaar expectancy theory in assuming that vari-
ability in animals’ perception of reinforcement amounts and delays
is proportionate to their magnitude (Gibbon, Church, Fairhurst, &
Kacelnik, 1988). Bateson and Kacelnik (1995) provided some
empirical evidence that the internal representation of food amounts
in starlings follows Weber's law in this fashion.

Savage (1954, p. 103) applied the logic of Weber's law to the
evaluation of outcome differences in the context of riskless choice,
describing a regularity in people’s subjective evaluation of out-
comes subsequently called percentage framing (Thaler, 1980), in
which a difference in outcome values is judged proportionately to
the magnitude of the reference outcome. Thus, a $100 price
reduction seems significant when buying a $200 pen (a saving of
$100/$200 or 50%) but trivial when buying a$20,000 car (asaving
of only $100/$20,000 or 0.5%). Whereas outcome framing relative
to a reference point (Kahneman & Tversky, 1984) involves a
cognitive operation that computes a difference and results in a
relative evaluation of positive or negative valence, the percentage
framing of outcomes involves a cognitive operation that computes
aratio and results in a different evaluation of relative magnitude.
Such ratio comparisons are not restricted to just human compari-
sons of money savings. Gallistel and Gelman (1992) reviewed a
large amount of evidence that suggests that rats’ comparisons of
numerosities involve ratio operations and that animal number and
duration discrimination conforms at least qualitatively to Weber's
law.

In combination, these results suggest that the coefficient of
variation (CV), ameasure of the relative variability of risky choice
dternatives that is calculated by dividing the standard deviation
(SD) of outcomes by their expected value (EV; and often multi-
plying it by 100 to express the SD as a percentage of the EV),
might be a better predictor of risk sensitivity than the unstandard-
ized variance or SD. The CV is, indeed, widely used as a measure
of relative risk—risk per unit of expected returns—in applications
that include engineering (e.g., Abacus Technology Corporation,
1996), medicine (e.g., Wennberg & Wennberg, 2000), agricultural
economics (e.g., Johnson, Williams, Gwin, & Mikesell, 1986),
archaeology (Crowther & Barker, 1995), and financia manage-
ment (Gunther & Robinson, 1999; Rajgopal & Shevlin, 2000).
Monitoring systems that evaluate human performance or the per-
formance of physica systems (e.g., manufacturing processes, ra-
don measurement) use the CV as their preferred measure of the
system’s precision; in such applications, the CV is often called the
relative standard deviation (Rector, 1995). Thus, it is surprising
that, until very recently, it has not been examined as an index of
risk in risky choice.

Aside from greater psychophysical plausibility as a measure of
perceived variability or risk, the CV has the advantage of allowing
comparisons of risk sensitivity across choice situations that differ
in range (e.g., the weight of mice vs. the weight of men) or
outcome dimension (e.g., weight vs. height). Dividing the SD by
the EV makes the CV dimensionless (i.e., cancels out the dimen-
sion of obtainable outcomes, e.g., dollars or time spent), an ad-
vantage for comparative analyses that has not gone unnoticed by
methodologistsin ecology or other applied research areas (Hilborn
& Mangel, 1997).2 It is precisely the possible cancellation of
measurement units in the numerator and denominator that makes
the CV a more attractive standardization of relative risk than the
division of variance by EV.

Of Bees and Men: The Utility of Cross-Species
Comparisons of Risk Taking

The animal literature on risky decision making, including risk-
sensitive foraging, ought to hold lessons for human decision mak-
ing under risk and uncertainty. Human responses to risky situations
derive, at least in part, from the same mechanisms evolved by
other animals in response to the stochasticity of their natural
environment. In addition to learning on an evolutionary scale,
learning on an ontogenetic scale is involved in shaping the behav-
ior of humans and other animalsin risky environments (Thorndike,
1898; Williams, 1988). However mediated, many similarities in
the decision behavior of humans and other animals have been
documented, including matching rather than maximization behav-
ior (e.g., Commons, Herrnstein, & Rachlin, 1982) and violations of
the postulates of the expected utility model, in particular intransi-
tivity of preferences (Shafir, 1994) and the Allais paradox (for a
review, see Real, 1996).

Both cognitive and socia psychologists have recently suggested
dua process theories of information processing and reasoning
(e.g., Chaiken & Trope, 1999; Sloman, 1996) that have been
applied to judgment and decision making (e.g., Windschitl &
Weber, 1999). These theories typically distinguish between rule-
based processing, a relatively effortful and controlled form of
processing that operates according to formal rules of logic and
probably involves brain structures more developed in higher ani-
mals, and associative processing, a more spontaneous form of
processing that operates by principles of similarity and contiguity
and involves brain structures present in both humans and lower
animals. To the extent that human decision making is mediated by
associative rather than rule-based processing, one would expect
similarity between choice patterns in human and animal data.

In this article, we take a two-pronged approach toward exam-
ining the similarities and differences in risk sensitivity exhibited
by humans and other animals. First, we compare the results of a
meta-analysis of human risk-preference data with the results of a

2 One drawback of the CV is that it is undefined for risky options that

have an EV of zero. Thisis not a problem for the risky options described
in this article that have outcomes either in the domain of gains (with EVs
greater than zero) or in the domain of losses (with EV s less than zero). For
mixed |otteries with the possibility of an EV of zero, there is evidence that
people evauate the positive and negative components separately and
subsequently combine their evaluations of the two components, as modeled
by cumulative prospect theory (Tversky & Kahneman, 1992).
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similar meta-analysis of animal data by Shafir (2000), who found
the CV to be a better predictor of risk sensitivity than variance.
Second, we report the results of two experiments. Experiment 1
places humans (undergraduates at the Ohio State University) in a
risky learning and decision-making situation as comparable as
possible to risky foraging choice tasks in animal experiments. The
outcomes of choice aternatives and their likelihood have to be
learned by repeated sampling over time, and the goodness of each
aternative is presumably established by associative learning. In
Experiment 2, a different set of human respondents solved the
same choice problems in a way typical for most human risky
choice experiments: That is, they were given outcomes and choice
probabilities in the form of a pie chart for each choice alternative.
As our results show, choice behavior was very different in the two
studies. The CV described risk sensitivity very well in Experiment
1, in which information was acquired by associative learning.

Some Caveats

Most models of risky choice, including the expected utility
model of human risky choice or the energy budget model of animal
foraging, merely aspire to predict choice behavior as a function of
general characteristics of the outcomes of the choice aternatives.
They are moot on the processes by which hypothesized choice
regularities may arise. For such models, the main argument of our
article is that variability of outcomesis a relative concept and that
its relative nature is best captured by standardizing the SD of
outcomes by the choice option’s EV. We show that the resulting
measure, the CV, is a better statistical predictor of risk sensitivity
than either the SD or the EV alone or in an additive combination.
This regularity can be demonstrated and used predictively without
any assumptions about the processes that would give rise to it.

Thisis not to say that process models do not exist. Kacelnik and
collaborators have recently provided process model candidates that
account for observed regularitiesin the risk sensitivity of birds and
other foragers as a function of variability in outcome amounts as
well as outcome delays (Kacelnik & Bateson, 1996). One such
model, SUT (Marsh & Kacelnik, 2002), applies Weber’'s law to
animals' internal representation of perceived or expected out-
comes. An amount of a particular magnitude is represented by a
normal probability density function with a mean and SD that are
both proportional to the amount, resulting in a constant CV across
magnitudes. The representation of a gamble is the (subjective
probability or relative frequency) weighted sum of the represen-
tations of the different possible outcomes. Together with some
assumptions about how two risky options are compared to arrive at
a choice (Kacelnik & Brito e Abreu, 1998),2 SUT predicts risk
aversion for choices among options perceived as desirable (in
which more is better) and risk seeking for choices among options
perceived as undesirable (in which more is worse). Because of its
use of Weber'slaw inits encoding and retrieval assumptions, SUT
aso predicts that risk sensitivity should be proportional to the CV
rather than the variance of outcomes.*

As a second caveat, our emphasis on the relative nature of risk
perception in this article neither addresses nor invalidates other
concerns about variance as a measure of risk (Luce & Weber,
1986). Future studies with more complex risky choice options than
two-outcome lotteries should look, for example, at a possible
asymmetry in the effect of the upside CV versus downside CV

(i.e., compute the positive and negative semi-SD of choice alter-
natives and standardize each by the options’ EV).®

Finally, our postulate that the CV is a better predictor of risk
sensitivity than variance does not question in any way that many
variables other than outcome variability affect risk sensitivity.
Some of those related to human decision making are further
discussed with respect to the results of our meta-analysis of the
human choice data. In the animal literature, other variables include
species differences in social organization and/or resource utiliza-
tion that affect the animals utility for outcomes differing in
volume, concentration, or delay (see Kacelnik & Bateson, 1996,
1998). Such variables can be expected to reduce the fit of models
that predict risk sensitivity simply as a function of outcome vari-
ability in the form of the CV.

Empirical Evidence for CV Versus Variance as Predictor
of Risk Preference

Meta-Analysis of Animal Data

Shafir (2000) demonstrated that predictions of risk preference
for awide range of animal foraging data are much improved by the
use of the CV rather than the variance or SD of outcomes as a
predictor variable. Shafir's meta-analysis included the studies re-
viewed in Kacelnik and Bateson (1996) as well asfour more recent
studies. Some studies consisted of a single experiment; other
studies consisted of several experiments. In each experiment,
foraging animals (wasps, bees, fish, and birds) had to choose
between an option that provided a constant reward and an option
that provided a variable reward with an expected value equal to the
constant reward. Food rewards included sucrose solution of vary-
ing concentrations, seed pellets, and mealworms. In al cases,
animals learned about the reward distribution offered by the two-
choice alternatives by repeated exposures prior to the experimental
choice trias. The dependent measure was the proportion of choice
trials for which animals chose the alternative with the constant
reward.® In 8 of these experiments, the energy budget was nega-
tive; that is, average available caloric intake was below survival
levels. In the remaining 49 experiments, the energy budget was
positive.

Use of the CV rather than variance or SD as the predictor of risk
preference makes it possible to include experiments with different
types of reward units in the same analysis because dividing the SD
by EV makes the CV dimensionless. Thus Shafir (2000) was able

3 The simplest one involves drawing a sample from the representation of
each option and choosing the option that provides the sample with the
higher value.

4 Kacelnik and Bateson (1996) identified associative learning processes
as an alternative explanation to SUT for risk seeking observed among
animals for delays of reinforcement. As we show below, associative
learning models also have the property of predicting risk sensitivity that is
proportional to the CV rather than the variance.

5 The results of our meta-analysis of human choice data reported below
suggest that such additional refinements will, in fact, be necessary.

% 1n our analysis of the animal and the human data, the implicit assump-
tion is that respondents are homogeneous, which alows us to aggregate
across respondents and to analyze group choice proportions as the depen-
dent measure.
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to include different species of foragers (nectarivores and nonnec-
tarivores) and types of reward (nectar differing in volume or
concentration or solid food rewards such as seeds or mealworms
differing in number) in his meta-analysis.

Because the expected value of rewards was the same within
each pair of choice options, risk—return models of choice (includ-
ing the energy budget rule) predict that preference for the constant
reward option isafunction of the variability of the variable reward
option. More formally, the expected utility of a risky option X,
E[u(X)], can be expressed as a trade-off between the utility of an
option’s EV and its risk (R; Bell, 1995):

E[u(X)] = W[EV(X)] — bR(X). (1)

For a quadratic utility function u, R(X) is equal to the variance.
Other utility functions are consistent with other measures of risk
(Bell, 1995; Jia & Dyer, 1997). The difference in utility between
risky option X and sure option Y that is equa in value to EV(X) is
alinear function of R(X):

E[u(M] = Elu(X)] = u[EV(X)] = {u[EV(X)] — bR(X)}
=bR(X). (2

If preference for sure option Y and the proportion of respondents
choosing the sure thing, p(ST), is proportionate to the differencein
utility between choice options, then p(ST) should also be an
increasing linear function of the riskiness of option X, R(X).

A similar result holds if we predict choice stochastically; for
example, an exponential version of Luce's (1959) probabilistic

Proportion choosing sure thing p(ST)

2 T T

response rule that is commonly used in adaptive learning research
(e.g., Camerer & Ho, 1999) follows:

Fluv] GHEV(X)]
U] FluX] ~ lEVO0] - gEVO9I-BRX)

p(ST) =

U EVIX)f Ul EV(X)] 1
{eU[EV(X)]/eLJ[EV(X)]} + {QJ[EVlX)]—bR(X)/eU[EV(X)]} = 1 + e BRX" (3)

In this case, p(ST) isan increasing logistic function of the riskiness
of option X, R(X), that can be approximated reasonably well by a
linear relationship for intermediate ranges of X.

To test whether the dimensionless CV as amesasure of perceived
risk (R(X)) predicts strength of preference for sure option Y, Shafir
(2000) regressed the proportion of choices favoring the constant
reward alternative (p(ST)) on the CV, separately for both positive
and negative energy budget experiments for which Caraco’'s
(1980) normative risk-sensitivity model predicts different slopes,
namely increasing risk aversion with variability for positive energy
budgets and increasing risk seeking for negative energy budgets, as
explained above. As shown in Figure 1, for positive energy bud-
gets (circles), larger variability (CV) was associated with greater
risk aversion: p(ST) = 0.53 + 0.001 CV, F(1, 48) = 22.13, R? =
.33, p < .0001. In light of the wide range of species and types of
reward included in the regressions (which can al be expected to
affect risk preference in addition to CV), these fits are impressive.

For negative energy budgets (squares in Figure 1), larger vari-
ability (CV) was associated with greater risk seeking, although
only at a margina level of significance: p(ST) = 0.52 — 0.0012

0 50 100 150

I T ! 1
200 250 300 350

Coefficient of variation

Figure 1. Proportion of animals choosing the constant award (sure thing) for experiments with positive energy
budgets (circles) and negative energy budgets (squares). Experiments in which al options were rewarded (no
zero outcomes) are shown as solid circles or sguares, and experiments in which one of the risky outcomes was
empty (zero) are shown as open circles or squares. From “Risk-Sensitive Foraging: The Effect of Relative
Variability,” by S. Shafir, 2000, Qikos, 88, p. 665. Copyright 2000 by Blackwell. Reprinted with permission.
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CV, F(1,7) = 5.08, R? = .42, p < .10. The number of data points
available for this regression was small because methodological
complications arise in experiments that examine foraging behavior
inanimalsin astate of starvation (see Kacelnik & Bateson, 1996).”
Thus, we have strong evidence that risk aversion for food amounts
increases with the CV of the risky option under positive energy
budget conditions. Methodological complications make it difficult
to obtain sufficient empirical evidence to test whether risk seeking
for food amounts is proportional to the CV (or other measures of
variability) under negative energy budgets. Prospect theory
(Kahneman & Tversky, 1979) suggests that decision makers are
aso risk seeking in the face of relative losses, that is, when
obtained outcomes are not necessarily losses in an absolute sense
but fall short of expectations—for example, a salary increase that
is smaller than expected. Observing animal foraging behavior
under such relative loss conditions requires some ingenuity but
does not pose the same methodological complications as negative
energy budgets. Marsh and Kacelnik (2002) recently observed risk
seeking in starlings for such relative losses, but they used only a
single-choice pair. Future studies using this methodology with a
range of choices in which the variable options vary in variance and
CV should alow for animal tests of risk sensitivity in the domain
of losses.

Shafir (2000) also addressed whether risk preferenceis sensitive
to outcome variability only in experiments with risky options that
involve zero outcomes, a point of contention in the animal litera-
ture, in which some studies have reported such a difference in
results (between risky choices that involve zero outcomes and
those that do not) and other studies have found risk sensitivity in
both kinds of experiments. To test for an effect of zero versus
nonzero outcomes, Shafir combined both positive and negative
energy budget experiments and computed risk sensitivity as devi-
ations of p(ST) from .5. In an analysis of variance of this measure
of risk sensitivity, adummy variable coding for zero outcomes was
not significant, F(1, 53) = 2.12, p > .10. Although null results
aways have to be interpreted with caution, it is at least plausible
that the apparent effect of zero outcomes (open circles or squares
in Figure 1) versus non-zero outcomes (solid circles or squares) in
some studies is an artifact of the fact that studied zero-outcome
choice options happen to have greater CVs, as shown in Figure 1,
and that greater CVs result in greater risk sensitivity.

The advantage of using the CV as a predictor of risk sensitivity
is that it allows for the inclusion of a large number of heteroge-
neous studies. The downside of using a disparate set of studies is
that the relative ability of CV to predict choice proportions cannot
be compared with that of other possible predictors such as the
variance, SD, or EV of the outcomes of the variable award because
these predictors are not comparable across studies that use differ-
ent types of outcomes. We can provide this information, however,
for a subset of experiments analyzed by Shafir (2000) that used the
same type of respondent and reward. Choice proportions came
from bees and wasps, and variability was in the volume of the
reward, which was nectar of a particular concentration.

As shown in Figure 2, the CV accounted for a large proportion
of the variation in risk sensitivity, |p(ST) — .5 = —0.05 + 0.0015
CV, F(1, 10) = 25.00, R? = .71, p < .0005, whereas the SD, F(1,
10) = 0.00, R? = 0, ns, and variance, F(1, 10) = 0.13, R> = .01,
ns, did not. To examine the possibility that risk sensitivity is a
function of the magnitude of the stakes (i.e., the expected value of
the pair of choice alternatives, as suggested by Jia & Dyer, 1997)

and that the CV is a better predictor of risk sensitivity because it
incorporates the EV in its denominator, we regressed risk sensi-
tivity on EV, measured by the sugar content of the nectar (sugar
concentration X nectar volume). As shown in Figure 2D, mean
sugar content of the nectar did not predict risk sensitivity, F(1,
10) = 0.43, R? = .04, ns. In summary, neither SD nor EV predicts
risk sensitivity in isolation. Their ratio, however, in the form of the
CV does so very well.

Meta-Analysis of Human Data

To test the ability of the CV to predict risk sensitivity in human
respondents, we searched the literature on human risky choice for
choice pairs that were similar in structure to the animal choice
situations analyzed by Shafir (2000). A comprehensive search
identified the 20 studies listed in Table 1, which provided a total
of 226 choice situations with the following characteristics. Each
situation presented a choice between either two gain options or two
loss options. In all cases, one of the options assured a certain
outcome; the other alternative had two potential outcomes that
occurred probabilistically. The expected value of both alternatives
was the same within each pair. The cited articles provided the
proportion of respondents (out of each study’s sample size, N) who
chose the sure thing (p(ST)) in each choice pair as well as coding
information about other variables, as shown in Table 1: respon-
dents’ gender, age category (young adults, older adults, or mixed),
and nationality (American, Israeli, Chinese, Japanese, British, or
Dutch); the substantive domain of the decision (money, time,
human lives, etc.); whether the outcomes were framed as gains or
losses; whether the risky option involved a zero outcome; whether
respondents had received some advance payments with which to
gamble (i.e., house money); and whether the choice was hypothet-
ical or had real conseguences.

We regressed p(ST), the proportion of respondents who selected
the sure-thing choice aternative, on the list of predictor variables
in Table 1.8 In addition to these qualitative predictors, we used the
following three quantitative variables as predictors of risk prefer-
ence: the CV of outcomes in the risky choice alternative as a
measure of relative risk, the probability of obtaining the lower of
the two possible outcomes in the risky choice option as a measure
of outcome skew, and the interaction between CV and skew as a
proxy for the possibly asymmetric effect of upside versus down-
side variability on risk perception and thus risk sensitivity. Be-
cause al three of these predictors are dimensionless, we could
examine their effect across a broad range of choice situations,
combining choices in al substantive outcome domains into a
single analysis.

A preliminary analysis confirmed the prediction of prospect
theory (Kahneman & Tversky, 1979) that risk sensitivity (i.e., sign
and magnitude of deviation of p(ST) from .5) depends more on
relative outcome framing (outcomes larger or smaller than some
expectation or reference point) than on the absolute sign of the
outcome: relative gain versusrelative loss, F(1, 223) = 92.07, p <

"Five of the eight data points analyzed come from a single study
(Caraco, 1980), in which birds received a relatively small number of
training trial's to minimize the consequences of a starvation energy budget.

8 Because the dependent measures were choice proportions, we applied
a logistic response transformation in all regression analyses.
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Figure2. Risk sensitivity (Jp(ST) — .5]|) of bees and wasps to variability in nectar volume as a function of the
coefficient of variation (A), the standard deviation (B), the variance (C), or the expected value (D) of choice
alternatives. Experiments with empty (zero) outcomes are shown as open circles; those without empty (zero)
outcomes are shown as solid circles. A, B, and C are from “Risk-Sensitive Foraging: The Effect of Relative
Variahility,” by S. Shafir, 2000, Oikos, 88, p. 667. Copyright 2000 by Blackwell. Reprinted with permission.

.0001, and absolute gain versus absolute loss, F(1, 201) = 26.82,
p < .0001, in separate regressions. When both predictors were
included in the same regression, the respective statistics were F(1,
223) = 91.57, p < .0001 (relative gain vs. relative loss), and F(1,
201) = 0.51, p < .48 (absolute gain vs. absolute l0ss). We thus ran
two separate regressions for choice situations framed as relative
gain versus relative losses and examined the effect of the absolute
sign of outcomes (absolute gains vs. absolute losses) within each
analysis.®

The results are shown in Table 2. For choices between options
framed as gains, the set of predictor variables accounted for 66%
of the variance in p(ST). For choices between options framed as
losses, the regression accounted for 59% of the variance. Tables 2
and 3 show F vaues and significance levels for Type 11l sums of
squares (SS), which assess the marginal contribution of the pre-
dictor given that al other listed variables are in the regression
equation. We use a significance level of .05 throughout. Table 2
aso reports the partial eta-squared as measure of effect size, that
|S, $efffe(:'(/($effect + $error)r usi ng the Type " $effec'('

The most important result for the purposes of this article is that
the CV was a significant predictor of risk taking in both the gain
and the loss domains. In the domain of gains, a larger CV was
associated with a greater proportion of choices of the sure option.
The effect went in the opposite direction in the domain of losses,
in which alarger CV was associated with a smaller proportion of
choices of the sure option.

The gender of respondents did not affect choice significantly,
partly because of alack of variation in the predictor variable. As

shown in Table 1, few investigators report choice behavior sepa-
rately as a function of respondents’ gender. Age affected choices
in the loss domain, with older adults being more risk seeking than
younger adults. Nationality of respondents affected choices in the
loss and the gain domains. Americans were less risk seeking for
losses and more risk averse for gains than respondents of other
nationalities (Japanese, Dutch, British, and Chinese).

Similar to the animal data, the presence of a zero outcome had
no effect on either gain or loss choices. The skewness of the risky
option (p(low outcome)) affected risk taking to a very sizable
degree for gain choices, and the interaction of p(low outcome) with
CV was significant for both gain and loss choices. The nature of
the interaction was consistent with previous observations that risk
perception is more sensitive to outcome variation below the mean
(which is larger in outcome distributions that are negatively
skewed) than to outcome variation above the mean (whichislarger
in outcome distributions that are positively skewed; Bontempo,
Bottom, & Weber, 1997; E. U. Weber, 1988).

Whether choices were purely hypothetical or involved real
payoffs had a significant effect for both gains and losses and a
sizable effect size, especially for losses, with real payoffs resulting
in greater risk aversion for choices involving gains and less risk
seeking for choices involving losses. Receiving an upfront pay-

° Diminishing marginal sensitivity to additional gains as well as losses
predictsrisk aversion in the domain of gains and risk seeking in the domain
of losses.
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Table 1
Listing of Choice Pairs Included in the Meta-Analysis of Human Choice Data
Decision Outcome Zero Hypothetical  Advance
Authors and no. of choice pairs  Average N Gender Age Nationality domain frame outcome decision payment
Kahneman & Tversky, 1984
1 152 B C American  Human lives Gains Y Y N
1 155 B C American  Human lives L osses Y Y N
1 150 B C American  Money Losses Y Y N
Highhouse & Paese, 1996
2 54 B C American  Jobs Gains Y Y N
2 54 B C American  Jobs L osses Y Y N
2 45 B C American  Money Gains Y Y N
2 45 B C American  Money L osses Y Y N
Takemura, 1993
2 79 B C Japanese Money Gains Y Y N
2 79 B C Japanese Money Losses Y Y N
Takemura, 1994
4 45 B C Japanese Human lives Gains Y Y N
4 45 B C Japanese Human lives L osses Y Y N
Fagley & Miller, 1990
2 33 M C American  Human lives Gains Y Y N
2 41 F C American  Human lives Gains Y Y N
2 35 M C American  Human lives L osses Y Y N
2 41 F C American  Human lives L osses Y Y N
2 33 M C American  Student lives Gains Y Y N
2 41 F C American  Student lives Gains Y Y N
2 35 M C American  Student lives L osses Y Y N
2 41 F C American  Student lives L osses Y Y N
Wang, 1996
4 31 B C American  Human lives Gains Y Y N
4 31 B C American  Human lives L osses Y Y N
1 33 B C American  Lives of relative Gains Y Y N
1 31 B C American  Lives of relative L osses Y Y N
4 42 B C American  Paintings Gains Y Y N
4 40 B C American  Paintings L osses Y Y N
4 34 B C American  Money Gains Y Y N
4 31 B C American  Money L osses Y Y N
Fagley & Miller, 1987
1 44 B C American  Human lives Gains Y Y N
1 42 B C American  Human lives Losses Y Y N
van Schie & van der Plight, 1990
2 117 B C British Human lives L osses N Y N
2 88 B C British Time L osses N Y N
4 48 B C Dutch Human lives L osses N Y N
2 48 B C Dutch Jobs L osses N Y N
Wang & Johnston, 1995
5 46 B C American  Human lives Gains Y Y N
5 46 B C American  Human lives Losses Y Y N
1 50 B C American  Lives of relative Gains Y Y N
1 50 B C American  Lives of relative L osses Y Y N
Leclerc, Schmitt, & Dubg, 1995
3 97 B C American  Time Losses N Y N
1 47 B C American  Time Gains N Y N
1 36 B C American  Money Losses N Y N
Schneider, 1992
9 25 B C American  Human lives Gains Y Y N
9 20 B C American  Human lives L osses N Y N
6 25 B C American  Animal lives Gains Y Y N
6 20 B C American  Animal lives L osses N Y N
3 25 B C American  Student lives Gains Y Y N
3 25 B C American  Student lives L osses N Y N
6 20 B C American  Jobs Gains Y Y N
6 25 B C American  Jobs L osses N Y N
3 20 B C American  Money Gains Y Y N
3 25 B C American  Money L osses N Y N
Highhouse & Yuce, 1996
1 118 B C American  Human lives Gains Y Y N
1 112 B C American  Human lives Losses Y Y N
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Decision Outcome Zero Hypothetical  Advance
Authors and no. of choice pairs ~ Average N Gender Age Nationdity domain frame outcome decision payment

Thaler & Johnson, 1990

3 111 B C American Money Gains N N N

2 111 B C American Money Losses N N N

1 111 B C American Money Losses Y N N

2 46 B (0] American Money Gains N Y N

2 58 B O American Money Losses N Y N
Laughhunn & Payne, 1984

8 39 B (0] American Money Gains N Y Y

8 39 B (0] American Money Gains N Y N
Schoemaker, 1990

1 214 B (0] American Money Gains Y Y N

1 214 B O American Money Losses Y Y N
Musser & Patrick, 1995

4 108 B O American Money Gains Y Y Y

4 108 B (0] American Money Losses Y Y Y
Kahneman & Tversky, 1979

1 70 B Mix  Israeli Money Gains Y Y Y

1 70 B Mix  Isragli Money Losses Y Y Y

1 72 B Mix  Israeli Money Gains Y Y N

1 72 B Mix  Isragli Money Losses Y Y N
Hsee & Weber, 1997

5 73 B C American Money Gains Y Y N

5 73 B C American Money Losses Y Y N

2 82 B C Chinese Money Gains Y Y N

2 76 B C Chinese Money Losses Y Y N
Loomes, Starmer, & Sugden,

1989

5 31 B British Money Gains N N N

1 31 B British Money Gains Y N N
Battalio, Kagel, & Jiranyakul,

1990

3 32 B C American Money Losses Y Y N

3 32 B C American Money Losses Y N Y

2 31 B C American Money Gains Y Y N

1 33 B C American Money Gains N Y N

2 30 B C American Money Gains Y N Y

5 31 B C American Money Gains N N Y

Note. B = both male and female; M = male; F = female; C = college students; O = Older adults; Mix = Mixture of college students and older adults;

Y = yes, N = no.

ment before making a (financially)™® risky decision had a signif-
icant effect on choices involving gains and more strongly losses,
making respondents more risk seeking, consistent with Thaler and
Johnson’s (1990) house-money effect.

The substantive domain of the decision (e.g., money vs. human
lives) had a significant and very sizable effect on risk taking for
choices in the gain domain, in which choices involving gains in
human lives were less risk averse than choices involving other
outcome dimensions, and even more so in the loss domain, in
which choices between options involving the loss of human lives
were more risk seeking.

To compare the ability of the CV of the risky choice alternatives
to predict risk sensitivity with that of their variance (or SD)
following Shafir's (2000) lead, we restricted our regression anal-
yses to choices between monetary outcomes; therefore, we are not
restricted to dimensionless quantitative predictors such as the CV.
Table 3 provides a summary of six different regression analyses,
each of which was run separately for (a) choices involving finan-
cial gains and (b) choicesinvolving financial losses. Thefirst three
regression models use the same predictor variables used in the
regression analysis of the full choice set in Table 2, with the

following exceptions. Gender was not reported in any of the
studies involving monetary lotteries and thus could not be used as
a predictor, and domain dropped out because we restricted this
analysis to a single content domain, money. The first three regres-
sion models differed only in their measure of outcome variability
or risk: Thefirst one (reported in the leftmost column) uses the CV
asitsmeasure of risk, the second regression (reported in the middle
column) uses the variance as its measure of risk, and the third
regression (reported in the rightmost column) uses the SD as its
measure of risk. The proportion of variance accounted for by each
of the three regressions is reported in the table note. F values and
p values of all predictor variables other than risk and itsinteraction
with p(low outcome) are very similar for all three regressions
and are thus only reported for the first one. The second set of
three regression models was identical to the first set but added
the EV of the choice pair to each of the first three regression

10 Upfront payment was provided only for financial risky choices.
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Table 2

Results of Regression Analysis of Proportion of Respondents
Choosing the Sure-Thing Option, Including All Decision Content
Domains

Source dfs F p Effect size
Choices between gains, R? = .66
Gender 2,97 2.60 .08 .05
Age 2,97 119 31 .02
Nationality 3,97 4.85 .004 13
Absolute outcome sign 1, 97 2.67 A1 .03
Advance payment 1,97 6.11 .02 .06
Outcomes for real 1,97 5.67 .02 .06
Domain 7,97 354 .002 .20
p(low outcome) 1, 97 26.37 < .0001 21
Zero outcome 1,97 0.44 .50 .00
cv 1,97 12.19 .0007 11
p(low) X CV 1,97 14.30 .0003 13
Choices between losses, R? = .59
Gender 2,85 0.76 48 .02
Age 2,85 3.87 .03 .08
Nationality 3,85 3.85 .007 .16
Absolute outcome sign 1, 85 242 A7 .03
Advance payment 1,85 9.24 .003 .10
Outcomes for rea 1, 85 2214 < .0001 21
Domain 7,85 10.48 < .0001 A7
p(low outcome) 1, 85 2.03 15 .02
Zero outcome 1,85 0.39 .53 .00
Ccv 1,85 6.11 .02 .07
p(low) X CV 1,85 6.12 .02 .07

Note. The reported effect size is the partial eta-squared, that is, SSyfec/
(SSutect T SSuron)s Using the Type 11l SSyeq. CV = coefficient of varia-
tion; SS = sums of squares.

equations.** The F value and p value of this additional predictor
variable are also shown in Table 3.

In the gain domain, use of the CV as a predictor of risk taking
in conjunction with the other predictor variables shown in Table 3
resulted in an R® of .62. Using the same set of predictors in
combination with the variance or SD of outcomes, respectively
(instead of the CV), reduced the R® to .52 and .53. Although all
three measures of risk were significant predictors, partial eta-
squared effect sizewas .16 for the CV and only .09 for the variance
and SD. In the loss domain, the R® was .59 for the regression
involving the CV and .56 and .58 for the regressions involving the
variance or SD, respectively. None of the three measures of risk
reached conventiona significance, but the CV reached a level of
marginal significance.

Whether outcomes were hypothetical or real affected risk sen-
sitivity for monetary gains and especially for monetary losses. Real
financial outcomes made respondents more risk averse for gains
and less risk seeking for losses, that is, a main effect (shift) in the
direction of less risk taking for both gains and losses. The skew-
ness of outcomes in the risky option (p(low outcome)) affected
risk taking in the domain of gains, in which greater downside
variability resulted in increased risk aversion, all other things being
equal. For neither gains nor losses, did any of the three measures
of variability or risk interact with the skewness of outcomes
(risk X p(low outcome)).

Adding the expected value of each choice pair to the regression
equations shown in Table 3 did not significantly improve our

ability to predict risk sensitivity, except for a small but significant
effect for gain choices, using the CV as the measure of risk. Thus
Dyer and Jia's (1997) hypothesis (mentioned in Footnote 5) that
degree of risk sensitivity might depend on the EV of choice
options seems to hold only for gain choices.

In summary, our meta-analysis of human risky choice studies
showed the CV to be a significant predictor of risk sensitivity
across a broad range of risky choice content domains. When
examined in the context of only risky financial decisions, however,
the CV proved to be only a marginally better predictor of choices
than more conventional measures of variability or risk, such asthe
variance, especially in the gain domain. Other variables predicted
risk sensitivity far more successfully, including whether outcomes
were real or hypothetical and the presence of a zero outcome,
consistent with aspiration level effects (Lopes & Oden, 1998). The
results implicating the CV as a predictor of human risk sensitivity
for financial decisions were clearly not as compelling as those of
the meta-analysis of the animal data. To test a potentia explana-
tion for this discrepancy, we conducted the following two
experiments.

Experiment 1
Learning Outcome Value and Probability by Experience

In this study, we tried to recreate as closely as possible the
learning conditions of an animal in atypical risky foraging study.
Without the benefit of symbolic representation and transmission of
vicarious experience that allows human experimenters to inform
human decision makers about choice outcomes and their likeli-
hood by statements such as “a 20% chance of winning $100,
otherwise nothing,” nonhuman animals need to acquire informa-
tion about the magnitude and likelihood of outcomes in different
choice alternatives through repeated sampling and personal expe-
rience. The encoding and use of outcome and likelihood informa-
tion are liable to be different under those two conditions, and the
processes that giverise to risk sensitivity that is proportional to the
CV may more likely operate under sequential sampling and asso-
ciative learning. Every single one of the 226 data points analyzed
in the meta-analysis of the human data came from studies that
presented choice aternatives in a summarized, symbolic fashion,
using either a numeric format (e.g., [$20, .1; $0, .9] vs. $2 for sure,
indicating a choice between a lottery that paid $20 with a proba-
bility of .1 or nothing with the remaining probability of .9 and a
sure gain of $2) or a spinner wheel or bar chart to describe
outcomes and their probabilities. We hypothesized that the advan-
tage of the CV over variance as a predictor of human risk sensi-
tivity would be stronger in situations in which human respondents
acquire information about risky choice options experientially and
over time.

' We included both the EV and the CV to test for the possibility that
risk sensitivity might depend on the EV of the choice options as hypoth-
esized by Dyer and Jia (1997). Although the inclusion of EV as predictor
in its own right and as the denominator term in CV might result in
multicollinearity problems for some data sets, this was not true for the
present set of choice options. Correlation between EV and CV was not
significant (with an r of —.07 and —.11, respectively) for both gains and
|osses.
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Results of Regression Analysis of Proportion of Respondents Choosing the Sure-Thing Option in

Choices Involving Monetary Outcomes

Risk = CV Risk = variance Risk = SD
Source dfs F p F p F p
Choices between financial gains®

Age 1, 50 2.78 A1
Nationality 3,50 4,19 .01
Absolute outcome 1, 50 1.93 A7
Advance payment 1, 50 6.80 .02
QOutcomes for real 1, 50 4,71 .04
p(low outcome) 1, 50 5.27 .03
Zero outcome 1, 50 1.79 .20
Risk 1,50 9.25 .004 5.06 .03 4,95 .03
p(low) X risk 1, 50 2.84 .10 1.63 .28 0.08 .78
Adding EV to above:

EV 1,50 5.09 .03 2.49 12 0.03 .87

Choices between financial losses”

Age 1,27 5.59 .03
Nationality 2,27 0.02 .98
Absolute outcome 1,27 0.20 .66
Advance payment 1,27 6.32 .02
Outcomes for real 1,27 20.52 .0001
p(low outcome) 1,27 0.44 .52
Zero outcome 1, 27 1.26 27
Risk 1,27 312 .09 0.79 .38 201 a7
p(low) X risk 1,27 0.05 .83 0.58 45 1.26 27
Adding EV to above:

EV 1,27 0.70 41 1.94 .18 0.54 47

Note. CV = coefficient of variation; SD = standard deviation; EV = expected value.

aRisk = CV, R? = .62; Risk = variance, R? = .52; Risk = SD, R? = 53.

variance, R? = .56; Risk = SD, R? = .58.

Method

Undergraduate students at the Ohio State University came to an exper-
iment on risky decision making that advertised that participants could win
money as a function of their decisions and preferences. Each of the 110
participants went through the following sequence of eventsin a one-on-one
session with an experimenter. The experimenter presented the participant
with two decks of cards, each deck consisting of 50 cards. The deck to the
left was labeled L, and the one to the right was labeled R. Respondents
weretold that they had the opportunity to sample cards from the two decks,
in any order they desired, until they had a good idea which of the two decks
was “better,” in the sense that they would prefer to draw from it during a
trial known to involve real monetary payoffs. Any card that was turned
over revealed a money amount that would be won as the result of drawing
the card. Respondents sampled at their leisure by pulling a card randomly
from the deck and replacing it afterward; with no explicit instructions about
the number of cards to sample, they drew on average about 20 cards from
the two decks. At the end of this sampling period, respondents indicated to
the experimenter from which deck (L or R) they preferred to draw a card
for the real-payoff trial. Unbeknownst to the respondents, the cards in one
of the two decks al had the same positive payoff ($x), whereas the cards
in the other deck provided two different payoffs, one zero ($0) and the
other a larger positive payoff ($y, y > X). The two decks had equal EVs.
Respondents received no information about outcome magnitudes or prob-
abilities other than what they obtained by sampling cards from the two
decks.

The experimenter shuffled the deck that was chosen by the respondent,
who then drew a card at random. The obtained payoff was noted before the

PRisk = CV, R? = 59; Risk =

respondent moved on to a new pair of decks for which the sampling and
decision procedure was repeated. Respondents indicated their preferred
deck from five pairs of decks, respectively, in this way; drew a card from
each of the preferred decks; and finally rolled a die that determined for
which of the five obtained outcomes they would receive an actual monetary
payoff.?

The possible outcomes, their probabilities, and expected values of the
five choice pairs are shown in Table 4. The position of the constant payoff
deck asthe L or R deck was counterbalanced across pairs and respondents.
The five choice pairsincluded in the study were selected in such away that
the variable payoff decks of three of the choice pairswere equal in variance
but differed in CV (through a change of skew transformation), whereas
another set of three were equal in CV but differed in variance (through a
change of scale transformation). Just as in the meta-analyses reported
above, both choice aternatives (the two decks) had equal EV, leading
again to the prediction that the proportion of respondents choosing the
constant payoff deck (p(ST)) should be a (positive) linear or perhaps
logistic function of the perceived riskiness of the variable-payoff deck. Our
design allowed us to see very clearly whether variance or CV is a better
measure of perceived risk in the sense of better predicting differences in
risk sensitivity and choice.

12 Respondents were paid for only one of their choices at the end of the
experiment to prevent house-money and other “wealth” effects.
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Table 4
Description of Choice Pairs Used in Experiments 1 and 2 and Hertwig et al. (in press) and Observed Proportions of Choices of Sure
Thing, p(ST)
Choice pair Gamble Model prediction
Experiment 1 Experiment 2
ID Sure thing Gamble Variance Ccv p(ST) FA® DD + FA p(ST)
Experiments 1 and 2

1 $1 $0, .9; $10, .1 9 300 .68 .69 (.03) .79 40

2 $3 $0, .5; $6, .5 9 100 .39 .59 (.05) .59 .25

3 $9 $0, .1; $10, .9 9 33 24 51 (.05) 34 72

4 $1 $0, .5; $2, .5 1 100 58 55 (.03) 55 24

5 $3 $0, .5; $6, .5 9 100 .39 .59 (.05) .59 .25

6 $6 $0, .5; $12, .5 36 100 42 .61 (.05) .61 45

Hertwig et al.

7 $1 $0, .9; $10, .1 9 300 .76 .69 (.03) .79

8 $9 $0, .1; $10, .9 9 33 22 51 (.05) 34

9 $3 $0, .9; $32, .1 92 300 .80 .82 (.03) .88
10 $3 $0, .2; $4, .8 3 50 12 52 (.04) 46

Note. In Experiment 1, the observed response proportions for the sure-thing option (p(ST)) were under experience-based choice, and in Experiment 2,
they were under description-based choice. CV = coefficient of variation; FA = fractional adjustment; DD + FA = dominance-detection augmented FA.

2The standard error of the estimate is shown in parentheses.

Results

Visual inspection and statistical analysis of the choice propor-
tions shown in the top of Table 4 confirm our prediction that risk
aversion increases with the CV, r(4) = .84, p < .08, rather than
with the variance of outcomes, r(4) = —.22, ns. Just as for the
monetary gain decisions in the meta-analysis of human choices,
the EV of the options of the choice pair also affected the likelihood
of choosing the sure thing, in the direction that respondents were
lessrisk averse for greater EV, r(4) = —.90, p < .05. However, the
CV predicts choice proportions even when EV isin the regression
equation, with an increase in R? from .80 to .91. Variance, con-
versely, does not predict choice proportions, either by itself or on
the margin of EV.

Modeling of Results

March (1996) recently examined some classic associative learn-
ing models for their ability to account for risk preference (i.e., risk
aversion for gains and risk seeking for losses) in situations that
closely parallel the conditions of Experiment 1. The models were
simple reinforcement learning rules dating back to the 1950s that
assume that people change their propensity to choose an option
from an initial starting point (e.g., indifference in the case of
pairwise choice) as a function of outcome feedback they receive.
The model that provided the best fit was the fractional adjustment
(FA) model, a variation on the classic Bush and Mosteller (1955)
and Estes (1959) stochastic learning model. The use of simple
learning rules to predict behavior in risky environments has also
been of interest in the animal literature (Hammer & Menzel, 1995;
Montague, Dayan, Person, & Sejnowski, 1995).

For the set of choice pairs used in Experiment 1, we simulated
the propensity to choose the sure thing predicted by the FA model,
assuming 20 learning trials (the average number of cards sampled
by our respondents). Initial choice propensities for the two options
in each pair were assumed to be .5 because decision makers had no
information about either of the two options. The probability of

choosing option i at timet + 1 (i.e,, p;, . ;) changes as the result
of the action taken at time t and the outcome then obtained. After
a favorable outcome, the choice probability increases; after an
unfavorable outcome, it decreases. The increment of change is a
proportion («, 0 = « = 1) of the propensity not to choose option
iontrid t(i.e, 1 — py:

Piers = Pie + a(l — py. (4)

The greater the learning rate parameter «, the faster the change. In
addition, the change in choice propensity depends on the magni-
tude of the (favorable) outcome x. For the two-alternative positive-
outcome choice problems of Experiment 1, this can be expressed
as

Pei=1-[(1— )1 —ppl (5

When x = 0, Equation 5 predicts that p;, , ; = p;,. The value of
P« + 1 determines the probability of choosing option i on the next
trial, a which point the fractional adjustment continues
recursively.

A systematic search of the parameter space showed that a value
of a = .14 provided the best fit (using a least-squares criterion) of
the FA model to the choice proportions for the sure-thing option in
the five choice pairs of Experiment 1. The choice probabilities
predicted by the FA model based on the average of 2,000 simu-
lation runs (equivalent to the proportion of sure-thing choice in a
sample of 2,000) are shown in Table 4. Also shown (in parenthe-
ses) is the standard error of that estimate for the sample size of
Experiment 1 (namely, N = 110). The FA model choice proba-
bilities correlated very highly with the CV of the gamble of each
pair across the five choice pairs, r(4) = .93, p < .03, but not with
the variance, r(4) = .23, ns.

There was a sizable (although because of the limited sample size
not significant) correlation between the FA model predictions and
the observed choice proportions across the five choice pairs,
r(4) = .73, p < .16, but visual comparison of observed and
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predicted choice proportions suggests room for improvements. The
FA model tends to predict a level of risk aversion higher than
observed for several of the choice pairs, and thisis particularly true
for Pair 3 and to some extent for Pairs 5 and 6. Its updating and
choice algorithm, in fact, prevents it from predicting any level of
risk seeking (i.e., p(ST) < .5), given equal EV of choice options
and indifference between the two options as a starting propensity.
Although capturing the updating of choice propensity on the basis
of payoff experience, associative learning models (such as the FA
model) fail to reflect other (higher order) cognitive processes such
as inferences or counterfactual comparisons. Modern learning
models frequently try to combine the power of such models with
insights of the cognitive revolution that followed them.*® In this
spirit, alearning model of human choice propensity in risky choice
environments based on (oftentimes) limited sampling requires
some augmentation beyond simple associative processes. One
obvious addition is peopl €’ s response to the detection of (apparent)
dominance of one choice aternative. Especialy in choice situa-
tions like Choice Pairs 1 and 3 of Experiment 1, in which one
outcome of the gamble is a rare event, there is a nonnegligable
chance that this outcome will never be sampled. Given a proba-
bility of .9 of obtaining $0 in the gamble of Choice Pair 1, for
example, the probability of never sampling the $10 outcome in 10
trials is .35. When confronted with 10 instances of obtaining $1
from Choice Option 1 and 10 instances of obtaining $0 from
Choice Option 2, human respondents will respond to this apparent
dominance by choosing Option 1 with a probability of 1.0; that is,
they will react to apparent dominance far stronger than predicted
by purely associative processes. The dominance-augmented FA
model, whose predictions are also shown in Table 4, thus adds the
assumption that the 35% of decision makers who can be expected
never to experience the rare outcomes in Choice Pairs 1 and 3 will
al choose the dominating option and that the remaining 65% of
decision makers will choose according to the associative rules of
the FA model.** The dominance-augmented FA model predictions
provide a better fit to the observed experience-based choice data,
r(4) = .85, p < .06, and again correlate significantly with the CV,
r(4) = .90, p < .04, but not with the variance of the risky choice
option, r(4) = .13, ns.

The experience-based choice proportions of Experiment 1 de-
viated from the predictions of prospect theory (Tversky & Kah-
neman, 1992), a modified version of expected utility theory de-
signed to account for a wide range of single (nonrepeated)
decisions between options whose outcomes and their probabilities
are usually described symbolically. Pair 3, for example, is a choice
pair usualy chosen to illustrate the certainty effect, that is, the
phenomenon that people strongly weight the certainty of a sure
option because most people choose the sure thing of $9 over the
lottery. To see the extent to which choice behavior would differ for
the choice pairs shown in Table 4 when people choose on the basis
of described (symbolic and vicariously learned) information about
outcomes and probabilities, we conducted Experiment 2.

Experiment 2
Method
A different sample of 55 Ohio State University undergraduate students

came to an experiment advertised and conducted in a fashion paralel to
that of Experiment 1, with the following exception. Rather than having to

sample from the two decks from which they would ultimately draw a card
for real payoff, respondents were given full information about probabilities
and payoffs of both choice aternatives in the form of two pie charts that
presented probability information numerically and pictorially and outcome
information numerically. As before, respondents provided their preference
for each of the five pairs of decks and then drew a card from the preferred
deck. Just as in Experiment 1, they then rolled a die that determined for
which of the five obtained outcomes they would receive an actual monetary
payoff.

Results

The proportions of respondents (out of 55) who chose the sure
thing in each of the five pairs in Experiment 2 when outcome
information was given rather than acquired by experience are
shown in the top of Table 4. Choices were quite different, espe-
cialy for the two choice pairs (1 and 3) with skewed gambles. As
predicted by prospect theory, respondents were now risk averse for
Pair 3. The correlation between the five choice proportions p(ST),
observed in Experiment 1 and those observed in Experiment 2 was
—.60.

Other Studies

Hertwig, Barron, Weber, and Erev (in press) investigated be-
havior under repeated sampling for two of the five choice pairs
used in Experiment 1 and essentially replicated our results. The
proportion of respondents (out of a sample of 26 Israglis recruited
for an experiment at the Technion in Haifa, Israel) who chose the
sure thing was .76 (compared with our result of .68) for Pair 1 and
.22 (compared with our result of .24) for Pair 3. Hertwig et al. used
two other choice pairs comparable to the choice problems in our
experiments except that the lottery in each pair had adlightly larger
EV than the sure thing, as shown in the bottom of Table 4. A
regression of risk sensitivity (p(ST)) for the nine choices made
after learning from experience shown in Table 4 (the five choice
proportions collected in Experiment 1 and the four choice propor-
tions collected by Hertwig et a., in press) on the EV and CV of the
risky option of each pair accounted for 85% of the variance, with
the CV as a significant predictor, F(1, 8) = 16.41, p < .007, but
not the EV, F(1, 8) = 0.24, p < .64. Regressing risk sensitivity
instead on EV and variance accounted for only 66% of the vari-
ance, with EV as a significant predictor, F(1, 8) = 7.60, p < .04,
and the variance as an only marginaly significant predictor, F(1,
8) = 4.06, p < .10.

Summary and Discussion
Risk Sensitivity and CV

The animal and human data presented in this article suggest that
risk sensitivity of human respondents and lower animals share

3 |n the context of strategic, game-theoretical interactions, for example,
the learning model by Camerer and Ho (1999) assumes that, in addition to
learning from past play, decision makers attempt to anticipate future play
by attending to the hypothetical payoffs of strategies that were not chosen
on a previous trial.

14 Other additional higher order mechanisms could be marshaled to
accommodeate the observed risk seeking for Choice Pairs 5 and 6 but would
take us too far away from the central question of this article, the compar-
ison between CV and variance as predictors of risk sensitivity.
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common characteristics. Both seem to be better predicted by the
CV, ameasure of the relative risk of risky choice alternatives, than
by their variance or SD. This is especially true when information
about variahility is acquired by experience, that is, when respon-
dents repeatedly sample choice dternatives and experience their
outcomes. Experientia learning of outcome values and their like-
lihoods over time is, of course, the norm for the risky decisions
made by lower animals. Many human risky decisions, however,
also provide opportunity for such experiential learning, for exam-
ple, the decision of whether to pack an umbrella in the morning
after a look at the sky, which is influenced by such past experi-
ences as the burden of carrying the umbrella unnecessarily and the
frequency of rain. For human decisions, direct experience of past
outcomes is usually also supplemented by third-party information.
Our ability to symbolically represent experience, which enables us
to manipulate it and communicate it to others, thus allowing for
vicariouslearning, probably goes along way toward explaining the
success of the human species. Symbolic information received
about choice outcomes and their probabilities can derive from
somebody else’s persona experience (e.g., the likelihood of get-
ting burgled in Rome during a one-year sabbatical) or from know!-
edge about underlying stochastic processes (e.g., gambling out-
comes, weather forecasts). Investment decisions aso offer the
opportunity for both types of input. Although statistical (symbolic)
information is available about past returns of investment options,
untrained investment decisions are undoubtedly also driven by
recent experiences of personal losses or gains. Overreactions to
recent events are most likely mediated by (faulty) associative
updating of outcome and likelihood information based on such
vivid, personal experience.

That decisions based on persona experience can differ from
decisions based on symbolic description of possible outcomes
should not have come as a complete surprise. Work in the area of
probabilistic reasoning provides precedent for the fact that differ-
ent ways of obtaining information can trigger different reasoning
processes, for example, frequency versus probability formats to
describe the likelihood of different events (Gigerenzer & Hoffrage,
1995). One could argue that frequency formats often result in more
accurate estimates of likelihood precisely because they allow peo-
ple to tap into their experience-based representation of events.

Associative Learning Models and CV Sensitivity

Associative learning models, such as the FA model, that assume
that risk sensitivity is shaped by outcome feedback over repeated
trials make predictions for risky choices that correlate highly with
the CV and far less with variance of the risky options. This result
does not appear to have been noted before. March (1996) and
Kacelnik and Bateson (1996) independently noted that associative
learning models predict observed risk attitudes (i.e., risk aversion
for gains and risk seeking for losses in human data and risk seeking
for delays in animal data). Neither one of them, however, exam-
ined the degree of risk seeking or risk aversion as a function of
different measures of outcome variability. Closed form solutions
for associative learning model predictions of choice propensity
after n learning trials are not readily available because of multiple
sources of nonlinearity (e.g., in the use of feedback information
and in sampling probabilities). However, simulations and algebraic
examination of components of such models readily show that
choice propensity is affected much more by changesin the skew of

the outcome distribution of risky options (which affect sampling
probabilities and the opportunity to observe possible outcomes)
than by changes of scale (which are, by definition, identical for
both choice options and thus—Iloosely speaking— often cancel
each other out). Changes in skew for positive outcome lotteries
affect the EV of a gamble without changing its variance (e.g.,
going from Choice Pair 1 to Choice Pairs 2 and 3 in the top of
Table 4) or change its variance without changing the EV (eg.,
going from Choice Pair 1 to Choice Pair 4). Either change affects
the CV of the risky option, whereas only the latter change affects
the variance. Changes in scale, conversely, always affect the
variance of the risky option but keep the CV constant because EV
and SD change by the same scale factor.

Other theories have addressed risky choice patterns that deviate
from predictions of expected-utility type theories (especially under
conditions of experientia learning, e.g., Busemeyer & Myung,
1992). These include Gonzales-Vallgjo's (2002) proportional dif-
ference model of choice and Busemeyer and Townsend's (1993)
decision field theory, which model s the choice deliberation process
as an accumulation of information about the consequences of a
decision over time. The observation that both of these models
make predictions that are consistent with the CV as the statistical
predictor of risk sensitivity provides a unifying classificatory di-
mension to choice theories that appear quite different on the
surface.

Two Paths to CV Sensitivity

In this article, we discussed two types of processes that give rise
to risk sensitivity that is better predicted by the CV than the
variance of risky outcome distributions. The first one is the rep-
resentation of outcome values that follows Weber’'s law. As de-
scribed in our introduction, there is fairly conclusive evidence in
the animal literature for such amodel of representation, which—in
combination with some simple assumptions about decision pro-
cesses—provides a process level explanation of choices that are
functionally described by prospect theory’s value function (see
Marsh & Kacelnik, 2002). The prospect theory value function has
been parameterized as a power function (e.g., u(x) = x2 for gains).
Like other power functions, it exhibits constant relative risk aver-
sion, meaning that the index of risk attitude under expected utility
theory —u’’(X)/u’(X) is a constant times 1/x. Use of the CV to
predict risk sensitivity by ameasure of variability that standardizes
it by dividing by EV reflects at least partly this dependence of risk
attitude on x. To the extent that the representation of outcomes
values following Weber's law is responsible for CV (rather than
variance) sensitivity of risk taking, this regularity should be ob-
served for both experience-based risky decisions and decision-
based risky decisions from given information because outcome
information needs to be represented in both paradigms.

This is in contrast to the other process shown in this article to
lead to CV sensitivity of risk taking. Associative learning of choice
propensity leads to choice behavior that correlates more strongly
with the CV than with the variance of risky choice options. Such
alearning process will, of course, only contribute to CV sensitivity
of choice in those decision situations in which behavior is shaped
by personal experience (feedback) over time.

These two processes are not mutually exclusive and most likely
operate in parallel. This would account for the fact that the meta-
analysis of human choice data (that reflect exclusively studies of
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description-based risky choice from givens) shows a much weaker
relationship between the CV and risk sensitivity than the animal
data meta-analysis and Experiment 1, in which the addition of
associative processes could contribute to a much stronger relation-
ship between the CV and risk sensitivity.

How to Model CV Sensitivity

The CV is arelative measure of risk that describes variability
per unit of return. Introspection suggests that such standardization
has face validity in describing our subjective experience of risk. A
lottery with an SD of $100 seems risky when its EV is $200 but
virtually a sure thing when its EV is $5 million. As mentioned in
the introduction, the CV is very widely used as a measure of risk
in a broad range of applied domains. The wide acceptance of EU
theory as the normative model of risky choice and of its modifi-
cations such as prospect theory as the best descriptive model of
risky choice may have prevented notice of the CV as a possible
measure of risk in the judgment and decision making literature on
risky choice. In particular, there exists no utility function such that
the expected utility of lottery X can be expressed as a risk—return
model with EV(X) as a measure of return and CV(X) as a measure
of risk, along the lines spelled out by Bell (1995) and Jia and Dyer
(1997). Risk—return decompositions of commonly used utility
functions result in measures of risk in which the outcomes of risky
option X are standardized by subtracting the option’s EV: R(X) =
f[E(X — EV(X)]. Our article suggests that a better functional rep-
resentation of the measure of risk to which human and animal
decision makers appear to be sensitive when making risky deci-
sions involves a standardization that divides outcome variability
by EV. Dyer and Jia (1997) showed that models that use such a
measure of risk (which they called relative risk—value models) can
explain many empirical choice patterns unexplained by EU
theory.*®

Our results suggest that existing deviations of human choice
behavior from prescriptive models in finance and economics
should be examined in light of the fact that people are responding
to a different index of risk than that assumed to underlie their
choices in EU-type models. Rabin (2000) recently called renewed
attention to the inconsistency of risk attitudes inferred from
choices between lotteries and sure-thing options at different scales,
under the assumption that risk preference follows a model like
expected utility or prospect theory, showing in particular that
degree of risk aversion computed from small stake choices vastly
(and ludicrously) overpredicts risk aversion for larger stake lotter-
ies. Although a variety of post hoc explanations have been pro-
posed to explain empirical choice patternsthat deviate from utility-
function based predictions, risk—return models of choice that use
the CV as their measure of risk very naturally predict such “in-
consistency” in risk attitudes for choices that differ vastly in
expected value.

CV Sensitivity as an Adaptive Response to Ecological
Regularities?

Our experiment and the meta-analyses of existing risky choice
data reported in this article document that, descriptively, the CV
dominates measures of absolute variability, such as the variance of
outcomes as a predictor of risk sensitivity. We conclude with some
speculations about whether such relative encoding of outcomes

and their variability should be considered just a cognitive bias, as
implied in Thaler's (1980) discussion of percentage framing, or
whether it might also have some adaptive function that may not be
immediately apparent. That relative risk perception and risk sen-
sitivity describe human behavior and especialy the behavior of
lower animals suggests that the cognitive mechanisms that give
rise to this regularity evolved quite a while ago and have not been
selected against.

We suggest that the prevalence of highly skewed distribution
function of the type

f(i) = (ali)b, (6)

where g, b, and k are constants (with b usualy close to unity and
1 <k < 2) andi indexes rank order along some continuum, might
make the relative encoding of variability along the lines of the CV
cognitively (or information-theoretically) efficient. Zipf (1949)
reported that a wide range of linguistic, sociological, biological,
physical, and economic phenomena have such J-shaped distribu-
tion functions (also see Simon, 1955).*% 17 The population size of
cities in the United States, for example, drops off in Zipf-law
fashion as we move from the 1st-ranked city (New York, with 7
million inhabitants in 1990: f(1) = &/1), to the 7th-ranked city
(Detroit, with 1 million inhabitants: f(7) = a/7), and to the 25th-
ranked city (New Orleans, with 300,000 inhabitants: f(25) = a/25).
Although the variance (or SD) in population of the 10 highest
ranked cities is very high (population drops off rapidly at the
beginning, following Zipf's law), the variance of the 10 lowest
ranked cities (which are almost equal in size, as ak does not
decrease appreciably for large values of k) is very low. If the
objective is to maintain approximately equal discrimination be-
tween U.S. cities across the whole range, it makes sense to encode
size in away that gives rise to JNDs that follow Weber’'s law and
to perceptions of variability that are approximated by the CV.
Another example, relevant for foraging birds, is the distribution of
nectar volume in plant species, which also follows a mirror-image
J-shaped function (see Figure 3). Only very few plant species
achieve very high volumes of nectar, so that nectar volume drops
off very rapidly among the highest ranked species but increasingly
less so among the lower ranked species. For one to maintain
approximately equal discrimination between plant species across
the whole range of nectar volumes, it makes sense to encode
volume differences in a relative manner, following Weber's law
(Shafir, Bechar, & Weber, 2003). Other examples of phenomena
that have such J-shaped, highly skewed distribution functions are
word frequencies in English and other languages, the distribution
of personal incomes as first discovered by Pareto (Champernowne,
1953), company budgets, and the size of river basins and earth
quakes. Explanations for the prevalence of such J-shaped (rather
than bell-shaped) distribution functions are beyond the scope of

15 Dyer and Jia (1997) reconciled EU models and relative risk—return
models in a somewhat artificial way by hypothesizing risk—return tradeoff
coefficients (b) that will do so, in particular, by making b a function of
EV(X).

16 Equation 6 is sometimes referred to as Zipf's law after Zipf (1949).

17 These distribution functions are often described as J-shaped because
their shape resembles the capital letter J when frequencies are plotted
starting with the lowest ranks (and lowest frequencies) or asamirror-image
J when frequencies are plotted starting with the highest ranks.
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Figure3. Thedistribution of mean nectar amounts according to their rank
order in a particular (xeric Mediterranean) ecosystem. Data are from
Petanidou and Smets (1995).

this article (but see Mandelbrot, 1953, and Simon, 1955). For our
purposes, their prevalence suffices to provide a possible explana-
tion for the development of cognitive representations of magni-
tudes that follow Weber’'s law as an adaptation to the structure of
the organisms' physical and socia environment.
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